Linear Algebraic Groups.pdf

Linear Algebraic Groups PDF

T-A Springer

Date de parution

Proposition 7: For a linear algebraic group G, tangent space at the unit and Lie algebra coincide: L(G). ∼. = TeG. Quotients by normal subgroups. Theorem: If H ⊆ ...

8.18 MB Taille du fichier
9780817648398 ISBN
Libre PRIX
Linear Algebraic Groups.pdf


PC et Mac

Lisez l'eBook immédiatement après l'avoir téléchargé via "Lire maintenant" dans votre navigateur ou avec le logiciel de lecture gratuit Adobe Digital Editions.

iOS & Android

Pour tablettes et smartphones: notre application de lecture tolino gratuite

eBook Reader

Téléchargez l'eBook directement sur le lecteur dans la boutique ou transférez-le avec le logiciel gratuit Sony READER FOR PC / Mac ou Adobe Digital Editions.


Après la synchronisation automatique, ouvrez le livre électronique sur le lecteur ou transférez-le manuellement sur votre appareil tolino à l'aide du logiciel gratuit Adobe Digital Editions.

Notes actuelles

Sofya Voigtuh

Abstract. A linear algebraic group over an algebraically closed field k is a subgroup of a group GL n (k) of invertible n × n-matrices with entries in k, whose elements are precisely the solutions of a set of polynomial equations in the matrix coordinates.The present article contains a review of the theory of linear algebraic groups. Linear Algebraic Groups -

Mattio Müllers

Linear Algebraic Groups | Springer for Research & … This book is a revised and enlarged edition of "Linear Algebraic Groups", published by W.A. Benjamin in 1969. The text of the first edition has been corrected and revised. Accordingly, this book presents foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. After establishing these basic topics, the text then turns to solvable groups, general

Noels Schulzen

Ž . It is natural to ask whether is an open compact subgroup of H E , where H is a linear algebraic group over a closed subfield E ; F. We show that indeed has.

Jason Leghmann

Linear Algebraic Group -- from Wolfram MathWorld The linear algebraic groups are similar to the Lie groups, except that linear algebraic groups may be defined over any field, including those of positive field characteristic. The special linear group of matrices of determinant one is a linear algebraic group.

Jessica Kolhmann

Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of the first ten chapters covers the contents of the old book, but the arrangement is somewhat different and there are additions, such as the basic facts about algebraic varieties and algebraic groups over a ground field, as well