Calculus of Fractions and Homotopy Theory.pdf

Calculus of Fractions and Homotopy Theory PDF

Peter Gabriel

Date de parution

Colloquium Lectures (AMS) — Wikipédia

1.81 MB Taille du fichier
9783642858468 ISBN
Calculus of Fractions and Homotopy Theory.pdf

Technik

PC et Mac

Lisez l'eBook immédiatement après l'avoir téléchargé via "Lire maintenant" dans votre navigateur ou avec le logiciel de lecture gratuit Adobe Digital Editions.

iOS & Android

Pour tablettes et smartphones: notre application de lecture tolino gratuite

eBook Reader

Téléchargez l'eBook directement sur le lecteur dans la boutique www.turossheadcountryclub.com.au ou transférez-le avec le logiciel gratuit Sony READER FOR PC / Mac ou Adobe Digital Editions.

Reader

Après la synchronisation automatique, ouvrez le livre électronique sur le lecteur ou transférez-le manuellement sur votre appareil tolino à l'aide du logiciel gratuit Adobe Digital Editions.

Notes actuelles

avatar
Sofya Voigtuh

The notion of an (∞,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of

avatar
Mattio Müllers

Homotopy theory is about localization of categories ... I.0 – Timeline of homotopy theory ... Reflective localizations are a particular case of calculus of fractions.

avatar
Noels Schulzen

Such a theory would be, of course ... and show that it is a model category for the homotopy theory. By ... [GZ] P. GABRIEL, M. ZISMAN, Calculus of fractions and.

avatar
Jason Leghmann

It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo- logical algebra. Our category is thus the" topological" analogue of the derived

avatar
Jessica Kolhmann

The notion of an (∞,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of